目录
1. libpytorch下载2. Adaface模型下载3. 模型转换4. c++推理4.1 前处理4.2 推理4.3 编译运行4.3.1 写CMakeLists.txt4.3.2 编译4.3.3 运行
1. libpytorch下载
参考: https://blog.csdn.net/liang_baikai/article/details/127849577 下载完成后,将其解压到/usr/local下
2. Adaface模型下载
https://github.com/mk-minchul/AdaFace?tab=readme-ov-file WebFace4M模型准确率最高,R50 WebFace4M和R100 WebFace12M的准确率十分接近,但耗时却低了不少,所以建议使用R50 WebFace4M
3. 模型转换
下载Adaface源码,并将下面代码放到其目录下执行即可
model_trans.py
import torch
import torch.nn as nn
from head import AdaFace
import net
import onnxruntime as ort
import numpy as np
import onnx
# 加载模型
adaface_models = {
# 'ir_101':"./adaface_ir101_ms1mv2.ckpt",
'ir_50':"./adaface_ir50_webface4m.ckpt",
}
architecture = 'ir_50'
model = net.build_model(architecture)
#model = AdaFace()
statedict = torch.load(adaface_models[architecture],map_location=torch.device('cpu'),weights_only=True)['state_dict']
model_statedict = {key[6:]:val for key, val in statedict.items() if key.startswith('model.')}
model.load_state_dict(model_statedict, strict=True)
for p in model.parameters():
p.requires_grad = False
model.eval()
device = torch.device("cpu");
model_cpu = model.to(device)
# 创建一个示例输入
example_input = torch.rand(1, 3, 112, 112) # 假设输入大小为 (1, 3, 112, 112)
# 转换为 TorchScript
traced_model = torch.jit.trace(model_cpu, example_input)
# 保存模型
traced_model.save('adaface.pt')
# 导出为 ONNX 格式
#onnx_file_path = 'adaface.onnx' # 输出文件名
#torch.onnx.export(model, example_input, onnx_file_path,
# export_params=True)
#opset_version=11, # ONNX 版本
#do_constant_folding=True, # 是否进行常量折叠
#input_names=['input'], # 输入名称
#output_names=['output'], # 输出名称
#dynamic_axes={'input': {0: 'batch_size'}, # 动态 batch size
# 'output': {0: 'batch_size'}})
4. c++推理
4.1 前处理
resize人脸图片为112x112归一化BGR->RGB转换为tensorN H W C->N C H Wreshape 1,3,112,112(模型输入shape)
4.2 推理
load model读取图片人脸检测对齐前处理model.forward推理
#include
#include
#include
#include
torch::Tensor to_input(const cv::Mat& pil_rgb_image) {
cv::Mat brg_img;
cv::resize(pil_rgb_image, brg_img, cv::Size(112, 112));
brg_img.convertTo(brg_img, CV_32FC3, 1.0 / 255.0);
brg_img = (brg_img - 0.5) / 0.5;
cv::cvtColor(brg_img, brg_img, cv::COLOR_BGR2RGB);
torch::Tensor tensor = torch::from_blob(brg_img.data, {1, brg_img.rows, brg_img.cols, 3}, torch::kFloat32);
tensor = tensor.permute({0, 3, 1, 2});
tensor = tensor.reshape({1, 3, 112, 112});
tensor = tensor.to(at::kCPU);
return tensor;
}
int main() {
// 模型加载
torch::jit::script::Module model;
try {
model = torch::jit::load("./adaface.pt");
//model.eval();
model.to(at::kCPU);
} catch (const c10::Error& e) {
std::cerr << "Error loading the model\n";
return -1;
}
// 读取图片
std::vector
getAllFiles("./images", images, {"jpg", "jpeg", "png"});
// 人脸检测器初始化
OpenCVFace open_cv_face;
open_cv_face.Init("./models/face_detection_yunet_2023mar.onnx",
"./models/face_recognition_sface_2021dec.onnx", 0.9, 0.5);
for (const auto &image_path : images)
{
// Load an image using OpenCV
cv::Mat orig_img = cv::imread(image_path);
if (orig_img.empty()) {
std::cerr << "Could not read the image\n";
return -1;
}
auto detect_start = GetCurTimestamp();
std::vector
// 人脸检测对齐
open_cv_face.detectAndAlign(orig_img, aligned_faces);
//std::cout<<"detect use time is "<< (GetCurTimestamp() - detect_start)< for (const auto &face:aligned_faces) { cv::Mat img(face); auto img_tensor = to_input(img); // Inference 推理 std::vector inputs.push_back(img_tensor); auto output = model.forward(inputs); // Check if the output is a tuple if (output.isTuple()) { auto output_tuple = output.toTuple(); if (output_tuple->elements().size() > 0) { at::Tensor output_tensor = output_tuple->elements()[0].toTensor(); //std::cout << output_tensor << std::endl; } else { std::cerr << "Output tuple is empty\n"; return -1; } } else { at::Tensor output_tensor = output.toTensor(); //std::cout << output_tensor << std::endl; } } } return 0; } 注意:本代码的人脸检测和对齐使用opencv的Yunet和SFace实现, 地址 4.3 编译运行 4.3.1 写CMakeLists.txt 本工程依赖opencv和libtorch,一并下载解压到/usr/local下即可。 cmake_minimum_required(VERSION 3.22.1) project(adaface-demo) set(QMAKE_CXXFLAGS "-std=c++17") set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin) include_directories(/usr/local/include) link_directories(/usr/local/lib) set(OPENCV_VERSION "4.9.0") set(OPENCV_INSTALLATION_PATH "/usr/local/opencv4" CACHE PATH "Where to look for OpenCV installation") # Find OpenCV find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH}) if (AARCH64) set(Torch_DIR /usr/local/libtorch/lib/python3.10/site-packages/torch/share/cmake/Torch) else () set(Torch_DIR /usr/local/libtorch/share/cmake/Torch) endif () find_package(Torch REQUIRED) include_directories(${TORCH_INCLUDE_DIRS}) AUX_SOURCE_DIRECTORY(./src DIR_SRCS) add_executable(adaface-demo ${DIR_SRCS}) target_link_libraries(adaface-demo ${OpenCV_LIBS} ${TORCH_LIBRARIES}) 4.3.2 编译 mkdir build cd build cmake .. 4.3.3 运行 将模型文件adaface.py拷贝到bin目录下 cd ../bin ./main